How to solve incomplete quadratic equations:

There are two kinds of incomplete quadratic equations:
$\left.1^{\text {st }}\right) \mathrm{c}=0 \rightarrow$ The $2^{\text {nd }}$ degree equation is $\mathbf{a x}^{2}+\mathbf{b x}=\mathbf{0}$
To solve this kind of equations you should follow the following steps:

- Move all terms to the same side, so the equation is set equal to 0 .
- Factor the algebraic expression.
- Set each factor equal to 0 . (If the product of two factors equals 0 , then either one or both of the factors must be 0).
- Solve each resulting equation.

Example:

$$
\begin{aligned}
& x^{2}-2 x=0 \Rightarrow x(x-2)=0 \Rightarrow x_{1}=0 x_{2}=2 \\
& 7 x^{2}+12 x=0 \Rightarrow x(7 x+12)=0 \Rightarrow x_{1}=0 x_{2}=-\frac{12}{7}
\end{aligned}
$$

Example:

$$
\begin{array}{lll}
2 x^{2}-6 x=0 & 2 x(x-3)=0 \\
& 2 x=0 & x=0 \\
& x-3=0 & x=3
\end{array}
$$

$\left.2^{\text {nd }}\right) \mathrm{b}=0 \rightarrow$ The $2^{\text {nd }}$ degree equation is $\mathbf{a x}{ }^{2}+\mathbf{c}=\mathbf{0}$
This type of equations can be solved by solving for \boldsymbol{x}.

$$
\alpha x^{2}+c=0 \Rightarrow \alpha x^{2}=-c \Rightarrow x^{2}=\frac{-c}{a} \Rightarrow x= \pm \sqrt{\frac{-c}{a}}
$$

Example: $x^{2}-225=0$

$$
x^{2}-225=0 \Rightarrow x^{2}=225 \Rightarrow x= \pm \sqrt{225}= \pm 15
$$

Example: $4 x^{2}+100=0$

$$
4 x^{2}+100=0 \Rightarrow 5 x^{2}=-100 \Rightarrow x^{2}=\frac{-100}{4} \Rightarrow x= \pm \sqrt{-25} \text { No real solution }
$$

